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There are numerous methods to introduce an amino group into
anaromaticring system that retain the aromaticity of the nucleus
(path A).12 On the other hand, there appear to be no reported
processes that directly introduce an amino group by interrupting
the aromatic system, resulting in alicyclic amines (path B).
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Furthermore, considerable effort34 has been directed toward the
synthesis of 8-amino acids because of their occurrence in natural
products,6 as well as their utility as intermediates for preparing
B-lactams,’ therapeutically enhanced peptides,? chiral ligands,
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chiral building blocks, and chiral auxiliaries. Of these, the
procedures involving a Michael addition of an amine to an a,8-
unsaturated carbonyl compound* are the most versatile and simple.
Although many Michael additions of amines have been described,
thereare no reports of the analogous direct amination of aromatic
compounds.®

In the course of our studies on oxazoline chemistry, we have
developed several asymmetric carbon—carbon bond formation
reactions!®!! and also applied these to the synthesis of natural
products.!s12 Now we wish to describe a highly efficient regio-
and stereoselective tandem addition of lithium amides—electro-
philes to naphthalenes carrying the chiral oxazoline (1, 2). The
resulting doubly substituted products 3 and 4, obtained in excellent
yields and diastereoselectivity, were then transformed into the
novel 8-amino acids 7 and 8 of high enantiomeric purity.

1-[4/-(S)-tert-butyloxazolin-2’-yl]naphthalene, 1,13 and 2-[4/-
(S)-tert-butyloxazolin-2’-yl]naphthalene, 2,12 served as suitable
starting material for various lithium amide additions (Scheme
1). Both naphthyloxazolines reacted smoothly with lithium
amides in the presence of HMPA (-78 and —50 °C), after which
the addition of electrophiles afforded the desired products in
excellent yields and with essentially complete diastereoselectivi-
ties.1415 However, in the absence of HMPA, poor yields were
observed (3a, 30%, 3b, 19%).1¢

In order to assess the stereochemical outcome, we subjected
4b to single crystal X-ray analysis, which indicated a rrans 15,25
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configuration for the piperidinyl and methyl groups, respectively.
The stereochemical course of the addition was therefore consistent
with previous organolithium additions to 1 and 2.!3 The initial
entry of the lithium amide to the naphthyloxazolines thus occurred
from the 8 face and opposite the bulky zert-butyl group (Scheme
2, A). Thesubsequent alkylation of the intermediate azaenolate
with the electrophile yielded the observed products, 3. Anunusual
aspect of this process was observed when diethyl carbonate was
used in the electrophilic step. As illustrated in Scheme 2,
naphthyloxazoline 1, when treated with lithium piperidide, gave
3b after treatment with iodomethane, presumably via A. On the
other hand, use of diethyl carbonate resulted in complete recovery
of starting naphthyloxazoline 1. This suggests that the adduct
of naphthyloxazoline 1and lithium piperidide is prone toreversal,!”?
and only relatively reactive electrophiles (iodomethane, allyl
bromide) lead to the desired products, whereas the relatively
poor electrophile (diethyl carbonate) is ineffective. This unusual
reversibility for A may simply be the result of the aromatic driving
force. We also found that bulky amides (lithium diisopropyla-
mide) gave only starting material, thus indicating that a significant
steric effect was also operating.

The present amide-naphthalene addition provided a stereospe-
cific synthesis of novel 8-amino acid 7 as shown in Scheme 3. In
order to obtain the primary amino acid, we chose the piperidone
ketal as a suitable ammonia equivalent. The reaction between
naphthyloxazoline 1 and the lithium amide of the piperidone
ketal went smoothly and afforded 3d in 96% yield and 99% de.!’

Hydrolysis of the acetal moiety in 3d (concentrated HCI, 95%)
was followed by the reverse Michael addition of carbon—nitrogen
bonds in the piperidone ring to liberate the free primary amine.
This was achieved by treatment of § with "BuNHj; in aqueous
NaOH. n-Butylamine played three important roles in this removal
sequence: (1) tosolubilize the substrate, (2) to trap the liberated
divinyl ketone,!8 and (3) to protect the free amine 6 from oxidation.
The removal of the oxazoline was carried out by hydrolysis (see
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the supplementary material), which gave the amino acid, 7 {[a]p
=100.0° (¢ = 0.18, DMSO)} (85%, >99% e¢!?), along with the
recovered 2-tert-butyl-2-aminoethanol (72%). It should be noted
that the 8-amino acid 7 is conformationally rigid due to the
dihydronaphthalene ring system, thus making it a good candidate
for use in peptidomimetics,2 especially as -turn mimetics. The
piperidine adduct 4b was also converted to the corresponding
B-amino acid, 8 {{a]p = 71.2° (c = 1.74, CHCl3)} (92%, >99%
ee!%), by the same hydrolysis conditions (5 N HCI, reflux), which
led to 7.2

4b 8

Further studies to reach a wide variety of novel, rigid 8-amino
acids and related 1,2-diamines in this series are underway and
will be reported in due course.
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